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E X H A U S T I O N  O F  A T H I N  F I L M  O F  A N O N L I N E A R - V I S C O U S  F L U I D  F R O M  A S L O T  

W I T H  S L I P P I N G  R E L A T I V E  TO T H E  U N D E R L Y I N G  S U R F A C E  

V. A. Chugunov ,  L. D.  Eskin, and S. L. Tonkonog UDC 551.324 

The problem of exhaustion of a thin film of a non-Newtonian fluid with a power rheoIogicaI law 
from a slotted orifice is solved with account of film slipping relative to the underlying surface. 
By the method of group analysis with transformation of the parameters entering the problem, 
an asymptotic formula for the film profile is obtained and a law of motion of the .film edge with 
small slipping is derived. 

The  problem of exhaustion of a nonlinear-viscous fluid from a slot was solved by Chugunov [1] under 
conditions of fluid adhesion to the substrate.  Some applications, however, involve situations where it is 
necessary to consider slipping of the spreading film relative to the underlying surface. With account of 
slipping, Tonkonog et al. [2] considered the problem of free spreading of a drop of a non-Newtonian fluid over 
a horizontal surface and constructed its asymptotic solution for e << 1 (small slipping). The paper [2] is based 
on using the invariance of the solution of the problem of drop spreading relative to a certain group of tensions, 
which t ransforms not only the independent variables and unknown function but  also the parameter e. This 
idea is also used in the present work to s tudy the dynamics of the surface of a thin film of a nonlinear-viscous 
fluid excaping from a stationary slot and slipping relative to a horizontal substrate. 

In accordance with [1, 3-5], the mathematical  formulation of the problem posed can be written in 
dimensionless variables as 

Ol Oq ~ 
t > o, o < z < zo(t); (1) 

a t -  Ox '  

q~ = s i g n ( ~ )  [12[a[ n + e/[aim], cr = llx, n > m; (2) 

x 0 ( 0 ) = 0 ,  l(0, t ) = l ,  t > 0 ,  t ( x o ( t ) , t ) = O ,  q~(xo( t ) , t )=O.  (3) 

Here l is the dimensionless thickness of the film, the front point xo(t) is unknown and has to be determined 
in the course of solving the problem, and e << 1. Equation (1) is obtained using the known slipping model 
proposed by Kamb [5]. Since the case of interest is a monotonically decreasing solution of system (1)-(3), 
relation (2) for the flow can be rewrit ten in the following form: 

qS = - 1 2 ( - a )  n - r m. (4) 

Note that  the notation is borrowed from [2], and for e = 0 problem (1)-(3) transforms into that solved in [1]. 
An infinitesimal operator corresponding to the gToup of transformations allowed by system (1)-(4) and 

transforming the parameter e can be easily found: 

O + x _ _ 0 + ( m  n ~ - - 0 .  
Y = (n + l ) t  ~j~ Ox - )- 0~ 

Kazan '  State University, 420008 Kazan' .  Translated from Prikladnaya Mekhanika i Tekhnicheskaya 
Fizika, Vol. 41, No. 2, pp. 71-76, March-April ,  2000. Original article submitted May 5, 1998; revision 
submitted November 12, 1998. 

0021-8944/00/4102-0267 $25.00 (~) 2000 Kiuwer Academic/Plenum Publishers 267 



Invariants of this group are 

I~ = ~ = x t  -~ ,  12 = ~ = et ~(~-m), I3 = l, 

where c~ = 1 / ( n  + 1). Hence, the solution of problem (1)-(3) should be sought in the form 

I = '(~(z, 77), xo( t )  = ~0 ta, ~0 = 907), z = ~/g(TI). 

In the variables r z, and 7, system (1)-(3) becomes 

z = 0 ,  r  z = l ,  

- zg,Tg-lu,'z)] = qz, 

~ = 0 ,  q = 0 ,  

(5) 

(6)  

where q = Cn+2(-r  + r/r m+l ( _ r  and the subscripts z and q denote differentiation with respect 
to these variables. The solution of system (6) is sought with accuracy to O(r/2) (note that  7/and ~ are small 
over a finite range of t since n > m): 

r  z/) = V(z )  + ~U(z )  + 0(~2) ,  g('q) = a + b~ + O(TI2). (7) 

Here V ( z )  and U(z)  are unknown functions and a and b are unknown constants determining the sought 
functions l and x0 with accuracy to O(e2). 

Using the definition of the function q, we easily find its expansion in powers of ~7: q = q0 + ql~ + O(z/2), 
where q0 = v n + 2 ( - V z )  n and ql = - n V n + 2 ( - v z ) n - l U z  + (n + 2 ) V n + a ( - V z ) n U  + an-mvm+l(-vz) m. 

From (6) we obtain equations for determining V and U: 

c ~ a n + l z V , = [ V n + 2 ( - V : ) " l z ,  z = 0 ,  V = I ;  z = l ,  V = 0 ,  q 0 = 0 ;  (8) 

aan{b(2n + 1 - m ) z V :  + a[zUz - (n - m)U]} = ql:, 
(9)  

z = 0 ,  U = 0 ;  z = l ,  U = 0 ,  q l = 0 .  

Following [1], we assume 

V = a~r  7 = (n + 1)/(2n + 1). (10) 

Then for g'0 we have tim Cauchy problem 

O t Z , ~ o  z ~ n + 2  n [(2~ (--(;0z) ]z, z = l ,  ~ 0 = 0 ,  g 'g+2(-~z0z)n=0, (11) 

which does not contain the parameter a. This is important for further derivation. The solution of problem 
(11) is described in detail in [1]. It has the form 

Zf'o = Cn(1 - z)O[1 + dl(1 - z) + d2(1 - z) 2 + . . . ] ,  (12) 

where/3 = n / ( 2 n  + 1) and C~ = /3 -~a~-~ ;  the coefficients dl and d2 are not used in what follows. Taking 
into account Eq. (10) and the first boundary condition of system (8), we can easily find the parameter a: 

a = ['~0(0)] -1/~. (13) 

Note that  Eq. (11) is invariant relative to a group of similarity with the operator t O/Ot + a x  O/Ox, 
hence, it allows a decrease in the order by the substitution 

= = ( t 4 )  

From (14), we obtain 

'r = z - # # ( z ) ,  (15) 

where # = u + "YX- With account of (14) and (15), Eq. (11) transforms to the first-order ordinary differential 
equation 

du _ P(X,u) (16) 
dx Q(X, ")  
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Fig. 1 

Here P(X,u)  = a + (n + 2)~'xn+l(--#) n-1 -- ~ X n + 2 ( - # ) n - 2 [ ( 3 n  + 2 ) # / n  + (n + 1)u]; 
Q(x, = n , J x " + 2 ( - u )  n - 2  

By virtue of Eqs. (14) and (15), it is necessary to s tudy the behavior of the solutions of Eq. (16) in 
the region X ~> 0, # ~< 0 (Fig. 1) to construct nonnegative, monotonically decreasing solutions of Eq. (11). In 
this region, there are two families L1 and L2 of the solutions of Eq. (16) (dashed curves) and the solution 
L separating them (solid curve). For curves of the family L2 and the curve L, the straight line ;~ = 0 is a 
vertical asymptote.  The asymptotic curve u ~ K X - ( n + 2 ) / n  is valid for curves of the family L for X ~ 0 (the 
constant  K < 0 acquires different values for different curves), and the asymptot ic  curve UL ", --al/ ' t;g - (n+l) /~  

is obtained for the curve L as X -~ 0. For X --* ec, all solutions have a binomial asymptote  u ~, -') 'X + M X  - h a  

( the constant M < 0 takes different values for different curves). Thus, the straight line # = 0 is an inclined 
asymptote  for all the curves mentioned. 

By virtue of Eqs. (14) and (15), each solution of Eq. (16) that belongs to the region .~/> 0, # ~< 0 gen- 
erates a one-parametric family of nonnegative, monotonically decreasing solutions of Eq. (11). Nevertheless, 
using the above-derived asymptotes, we can easily see that  the only nonnegative, monotonically decreasing 
solution '(J0 of Eq. (11) determined on the interval 0 ~< z ~< 1, which satisfies bo th  conditions (11) for z = 1, 
is generated by the solution u = UL(X) of Eq. (16). This solution is constructed as follows. From the second 
relation of (14), we obtain 

X 
In z = x / >  0. (17)  

0 
Equation (17) implicitly determines the function X(z) on 0 ~< z ~< 1 (we recall that UL(X) < 0 on 

0 < X < co), and X(0) = ec, X(1) = 0. As a result, the sought solution is determined using the first relation 
of (14); it is strictly greater than zero and finite at  the point z -- 0. This can be easily verified using the 
asymptot ic  curve UL(X) for X ---, ec, whence it follows that  the constant a determined by formula (13) is 
positive and finite. 

Relations (10), (12), and (13), with account of equalities (7), determine the first terms of expansions 
of the unknown functions ~ and 9 in powers of ~. 

To construct U, we write the expansions of the fimetion V and the coefficients of Eq. (9) in powers of 
the binomial 1 - z, confining ourselves to the main terms of these expansions for z --* 1 - 0: 

V : Cna'V(1 - z) ~ + o[(1 - z)r Vz = -/3Cna'V(1 - z) -'v + o[(1 - z)-~]; (18) 

nVn+2(-Vz) '~-1 = a~+ tT- l (1  - z) + o(1 - z), (19) 

(n + 2)Vn+l ( -Vz)  n = ~(n  + 2)a n+l + o(1). 

The  function U satisfies the inhomogeneous equation (9) for which the corresponding homogeneous 
equation can be written in the form 
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cm n+l[zwz - ( n -  re)w] = [r(Z)Wz + p(z)w]:, (20) 

where r(z)  = - n V n + 2 ( - V . )  n- l ,  p(z) = (n + 2 )V~+I ( -Vz )  n, and r(z) and p(z)  are expanded in powers of 

1 - z. W i t h  account of relations (19), the higher terms of these expansions are 

r(z)  ~ --an+13'-l(1 -- z), p(z)  ~ c~(n. + 2)a n+l. 

Therefore,  the  solution of Eq. (20) should be sought in the form 

w = (1 - z)*[1 + o(1)], z ---* 1 - 0. 

From (20), we obtain the characteristic equation for T 

(n + 1)r = --(2n + 1)7 "2, 

f rom which we find rl  = - 3 '  and r2 = 0. Hence, we have two independent par t icular  solutions of Eq. (20) 

with the asymptot ic  relations 

Wl ---- ( 1  - -  z ) -~ [1  + o(1)],  w2 = 1 + o(1).  

The  general solution of Eq. (20) has the form w = Awl  + Bw2,  where A and B are arbi t rary  constants. 

T h e  asymptot ic  behavior  of the functions Wl and w2 shows that  none of the solutions of homogeneous 

equat ion (20) satisfies the condition U(1) = 0. Thus,  we can s ta te  tha t  this condit ion determines the function 
U(z)  in a unique manner.  We find the asymptot ic  behavior  of U(z)  in the vicinity of the point z = 1. For 

this purpose,  we rewrite Eq. (9) determining this function in tile following form: 

aan+'[zUz - (n - r e ) U ]  = [r(z)Uz + p(z)U]: + f ( z ) ,  (21) 

Here f ( z )  = f l ( z )  + bf2(z); f l ( z )  = an-m[ym+l(--Vz)m]z; f2(z)  = --ana(2n + 1 -- m)zVz; the asympto t ic  

behavior  of  the functions r(z)  and p(z) for z --+ 1 - 0 is described above. 
Using expansions (18) and (19), we can easily obta in  

f~ (z) ,,~ -C2m+l/~m(1 r- g)an+X(1 - z) -x ,  fa (z )  "~ Cne~3(2n + 1 - m)an+~(1 - z) -~,  
(22) 

x = (~ + m + 1 ) / ( 2 ~  + 1). 

The solution of Eq. (21) should be sought in the form 

U = Ul(z)  + bU2(z), (23) 

where Ui is the solution of Eq. (21) for f ( z )  = f i (z) ,  i = 1, 2. If  z --+ 1 - 0, we obta in  

v~(~) = c~0(1 - z y  ~, i = 1, 2. (24)  

Subs t i tu t ing  (23) and (24) into (21), with account of (22), we find 

r : = l - x ,  r2 = 1 - 3 " ,  

Cm = - c 2 m + l a X - 1 3 m a - l ( 2 n  - rn + 1) -1, 6"20 = Cna~-l(2n + 1 - m ) / ( 3 n  + 2). 

Obviously, for z --+ 1 - 0 and m > 0, only the highest t e rm  of the first component  remains in the asympto t ic  

relation in the  right side of Eq. (23), i.e., 

and hence, we have 

U ~ C:0(1 - z) ' - x ,  (25) 

2 m + l  n +  X m q l  '~  B ( 1  -- Z) l - Y ,  B = C n a " ~ ( 2 .  -t- 1 - m )  - 1 .  (26) 

Since n > m, we have 1 - X > 0, and it follows f rom (25) and (26) tha t  the  boundary  conditions are 
satisfied for the  function U at the point z = 1. We have to find the parameter  b using the boundary  condition 

at the point  z = 0. Taking into account that  U(0) = 0, f rom (23) we find b = -UI(O)/U2(O). 
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Similarly to [2] the dependence of the parameter  b on a can be easily established. Indeed, according 
to the definition of the functions f t  and f2 and formula (10), we obtain 

f l ( z )  = a n + ~ [ 0 0 n + l ( - ~ ) l z ,  f2(z) = - a a n + " f ( 2 n  + 1 -- m) zg 'o z .  

Therefore,  we have 

U (z) = U 2 ( z )  = 

where Utl(z)  and U2t(z) are the solutions of Eq. (21) for a = 1. Hence, we obtain 

b = - a X - ~ l U t t ( O ) / U 2 1  (0). 

Finally, we formulate the algorithm for solving the posed problem. 

1. From system (11), which is easily reduced to the Cauchy problem, we find '~)0(z): 

. 

3. 

(27) 

(28) 

'~o: = -s l /~ 'g 'o("+2)/ '~,  s :  = - a z s l / ' " O o  ( '+2) / ' ,  z = 1, ~o = O, s = O. 

In numerical solution of the Cauchy problem, the initial conditions are imposed at a point close to the 
point z = 1 using the asymptotic formula (18). 

From formula (13), we find the parameter a. 

From the solution of two Cauchy problems 

u :  = [ s  - p ( z ) U l / , . ( z ) ,  

S:  = c t a n + l { z S -  U[zp ( z )  + r ( z ) ( n -  m ) l } / r ( z )  - f i ( z ) ,  i = 1, 2, z < 1; 

U = 0 ,  S = 0 ,  a = l ,  z = l  

we find the functions U n ( z )  and U21(z). 

4. The  parameter b is found from formula (28), and the functions Ut and U2 are built using formulas (27). 

5. The  values of the functions V and U are calculated from formulas (10) and (23). 

6. From the calculated values of V, U, a, and b, the unknown functions l ( x ,  t)  and xo( t )  are determined 
with accuracy to terms of order O(e 2) using relations (5) and (7). 

The  results of calculations conducted using the algorithm proposed are plotted in Figs. 2-4 (it was 
assumed that e = 0.1. Figure 2 shows the coefficient b [see (28)] as a function of the power exponent  in 
Kamb's  law. As m increases, the coefficient b decreases, hence, the effect of slipping on the motion of the film 
edge decreases. In addition, as m ~ n, the effect of slipping on the law of motion of the film edge becomes 
independent of the time factor. Figure 3 shows the coordinate of tile film edge x0 versus the time t with 
account (curve 1) and without account (curve 2) of slipping (it was assumed that  m = 0.5 and n = 3 in tile 
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calculations). As should be expected, the velocity of the film edge with slipping is greater than without it. 
Thus, the profile of the film slipping relative to the substrate (curve 1 in Fig. 4, t ---- 1) is always located higher 
than the profile of the film spreading under condition of its adhesion to the substrate (curve 2 in Fig. 4). 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 
00346). 
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